Fractals in Clojure - Newton Fractal
Newton-Raphson method is a technique that is used to find the roots of a function \(f(x)\). Newton-Raphson method finds the values of the roots by approximating the root first then iterating it using the formula \(a' = a - \frac{f(a)}{f'(a)}\), with each iteration we get a more accurate root, this is done until we get a accurate enough root.

(ns newton.core
(:refer-clojure :exclude [/ - + * > <])
(:use (clojure.contrib complex-numbers)
(clojure.contrib.generic [arithmetic :only [/ - + *]]
[comparison :only [> <]]
[math-functions :only [abs]])))
(defn convergence [f c step delta]
(let [dz #(/ (- (f (+ % (complex step step))) (f %)) (complex step step))
iter #(- % (/ (f %) (dz %)))]
(loop [lz c
z (iter c)
i 0]
(if (or (> i 31)
(< (abs (- z lz)) delta))
i
(recur z (iter z) (inc i))))))
Given a function f and a complex number c, we apply above formula, with each iteration we make better guesses using a step value, we stop either when we have tried 32 times and not find a accurate enough root, or we find an accurate enough root (a' - a will be smaller than the delta). We return the number of iterations required, that is what we use to paint the fractal.
(defn newton [f step delta img-size complex-plane]
(let [[width height] img-size
[xa xb ya yb] complex-plane]
(pmap #(let [[x y] %
zx (+ (/ (* x (- xb xa)) (- width 1)) xa)
zy (+ (/ (* y (- yb ya)) (- height 1)) ya)
c (complex zx zy)]
[x y (convergence f c step delta)])
(for [y (range height) x (range width)] [x y]))))
Each pixel on our image will map to a complex number on a complex plane, first we need to calculate the complex number that corresponds to the pixel then calculate the required iterations for that pixel. When done for each pixel we get a sequence of triples representing x,y coordinates and iterations required.
(defn draw [f step delta img-size complex-plane]
(let [rgb #(vector (* (mod % 4) 64) (* (mod % 8) 32) (* (mod % 16) 16))
[width height] img-size
image (java.awt.image.BufferedImage.
width height java.awt.image.BufferedImage/TYPE_INT_RGB)
graphics (.createGraphics image)
fractal (newton f step delta img-size complex-plane)]
(doseq [point fractal]
(let [[x y c] point
[r g b] (rgb c)]
(.setColor graphics (java.awt.Color. r g b))
(.drawLine graphics x y x y)))
(doto (javax.swing.JFrame.)
(.add (proxy [javax.swing.JPanel] []
(paint [g] (.drawImage g image 0 0 this))))
(.setSize (java.awt.Dimension. width height))
(.show))))
Drawing is done by iterating over the x,y,iteration triples and painting the pixel using a color depending on the iterations calculated (speed of convergence to a particular solution).
(draw (fn [z] (- (* z z z) 1))
0.000006 0.003 [512 512] [-1.0 1.0 -1.0 1.0])

(draw (fn [z] (+ (- (* z z z) (* 2 z)) 2))
0.000006 0.003 [512 512] [-1.0 1.0 -1.0 1.0])

(draw (fn [z]
(complex (* (Math/sin (real z)) (Math/cosh (imag z)))
(* (Math/cos (real z)) (Math/sinh (imag z)))))
0.000006 0.003 [512 512] [-2.0 2.0 -2.0 2.0])

(draw (fn [z] (- (* z z z z) 1))
0.000006 0.003 [512 512] [-1.0 1.0 -1.0 1.0])
